$\rho_{WH}\,(\frac{lbm}{cu\,ft})=\frac{141.5}{\gamma_o+131.5}\times62.4$ (7) Calculate the density of oil at bottom hole conditions,

 $ho_{BH} \, (rac{lbm}{cu\,ft})$, using the following equation with: the dissolved GOR,

Rs (scf/STBO), calculated in paragraph (b)(4) of this section;

the oil formation volume factor, Bo (bbl/STBO), calculated in

at the well site:

(6) Calculate the density of oil at the wellhead, $\rho_{WH}(\frac{lbm}{c_{H}fr})$, using

the following equation with the value of the oil API gravity, γ_o ,

paragraph (b)(5) of this section; the oil density at the wellhead,
$$ho_{WH}(rac{lbm}{cu\,ft})$$
, calculated in paragraph (b)(6) of this

section; and the dissolved gas gravity, $\gamma_{gd}=0.77$: $\rho_{BH}\left(\frac{lbm}{cu\ ft}\right)=\frac{\rho_{WH}\ +\ 0.0136\times Rs\times \gamma_{gd}}{Bo}$